

CURRENT TRENDS IN INFORMATION COMMUNICATION TECHNOLOGY RESEARCH

ILISHAN - REMO, NIGERIA.

ISSN: 2814-1709

CTICTR 4(1): 79 - 93 (June 2025)

Received: 08-03-2025

Accepted: 04-06-2025

<https://doi.org/10.61867/pcub.v4i1a.200>

DESIGN AND IMPLEMENTATION OF A WEB-BASED INVENTORY MANAGEMENT SYSTEM

**Eweoya Ibukun
Adigun Taiwo
Akinduro Folasade
Oladipo Sunday
Awoniyi Amos
Okorie Grace
Sodiq Kazeem
Lawal Olufunmilayo
Fabiyi Oluwatosin**

¹eweoyai@babcock.edu.ng

School of Computing, Babcock University, Ilishan-Remo, Ogun State, Nigeria.

DESIGN AND IMPLEMENTATION OF A WEB-BASED INVENTORY MANAGEMENT SYSTEM

Eweoya Ibukun¹, Adigun Taiwo², Akinduro Folasade³, Oladipo Sunday⁴, Awoniyi⁹,
Amos⁵, Okorie Grace⁶, Sodiq Kazeem⁷, Lawal Olufunmilayo⁸, Fabiyi Oluwatosin⁹
^{1,2,3,5,6,9} Software Engineering Department, Babcock University, Ilisan, Ogun
State

⁴Computer Science Department, Babcock University, Ilisan, Ogun State
⁷Computer Engineering Department, Yaba College of Technology, Yaba, Lagos
State

⁸Computer Science Department, Moshood Abiola Polytechnic, Abeokuta, Ogun
State

^{1,2,3,4,5,6,9} School of Computing, Babcock University, Ilisan-Remo, Ogun State, Nigeria.

Abstract

Efficient inventory management is essential for small and medium-sized enterprises (SMEs) to maintain optimal stock levels, streamline operations, and minimize losses resulting from stock mismanagement. This study presents the design and implementation of a Web-Based Inventory Management System (WBIMS) specifically tailored to address these challenges. The system was developed using PHP, HTML, CSS, JavaScript, and MySQL, following a systematic methodology comprising requirement analysis, system design (including use case and sequence diagrams), development, and deployment. Key features of the WBIMS include real-time stock tracking, automated email alerts for low inventory, role-based user access (administrators and staff), and a mobile-responsive interface for on-the-go inventory management. The system was tested using sample data from Babcock University's internal supply units to evaluate usability and performance. Results from system testing indicated a significant improvement in inventory accuracy, with error rates reduced by over 70% compared to manual methods. User feedback also highlighted improved workflow efficiency and ease of use. The WBIMS not only enhances operational transparency and decision-making but also reduces inventory-related costs, making it a scalable solution for SMEs and educational institutions seeking to digitize their inventory processes.

Keywords: *Inventory Management, web service, reorder, stock tracking, automated alert system.*

1.0 INTRODUCTION

Inventory management is crucial for businesses to maintain operational efficiency and meet customer demands. The International Accounting Standards Board (IASB) defines inventory as assets held for sale, production, or consumption, while the International Accounting Standards Board (IASB) defines inventory as assets held for sale, production, or consumption [1], and the

Council of Supply Chain Management Professionals (CSCMP) defines inventory management as the process of planning, implementing, and controlling the flow of goods, services, and information [2].

However, many businesses still rely on outdated, manual methods that are prone to errors and inefficiencies. While technology has introduced online inventory management systems that provide real-time tracking and data-driven insights, existing solutions often fall short in terms of user experience, scalability, and ease of use, especially for Small and Medium-sized Enterprises (SMEs)[3]. These businesses struggle with complex systems that require extensive setup, training, and maintenance.

This work aims to address these challenges by designing and developing a user-friendly, scalable, and customizable web-based inventory management system tailored to the needs of SMEs. The system focuses on real-time tracking, automated notifications, and data insights to help businesses optimize their inventory and enhance overall performance. The study follows a systematic methodology, including requirements gathering, system design, development, and evaluation to ensure the system's effectiveness in meeting business needs.

2.0 LITERATURE REVIEW

The growing demand for efficient inventory systems has led to the development of Web-Based Inventory Management Systems (WBIMS), particularly for SMEs and academic institutions. These systems address challenges such as manual errors, stock discrepancies, and inefficient procurement.

The work of [4] addressed the inventory management challenges faced by SMEs, especially those utilizing manual processes. The study presents a web-based system that integrates QR codes and barcodes to enable effective product tracking from purchase to sale. By offering real-time updates accessible to authorized users, the system enhances inventory accuracy and operational efficiency.

The study in [5] examined inventory management issues in university environments, such as overstocking and inefficient sourcing. The authors developed a web-based inventory system tailored to Olusegun Agagu University of Science and Technology. Key features of the system include timely alerts, comprehensive management reports, automated pricing calculations, and vendor performance analysis. The system is designed to improve inventory precision and streamline operational processes within educational institutions. While the study in [5] presents a functional web-based inventory system with features tailored to a university setting, its design is context-specific and lacks adaptability for broader applications across Small and Medium-sized Enterprises (SMEs).

Study in [6] explored inventory management within cloud-based supply chains. With a focus on the integration of machine learning techniques to optimize inventory allocation processes. The study emphasizes the importance of data-driven strategies in enhancing efficiency and decision-making within modern cloud supply chain environments. However, the study does not sufficiently address the challenges of system usability, customization for SME-specific contexts,

and real-time user feedback integration, which are crucial for practical implementation in diverse operational environments

Researchers in [7] worked on the design and implementation of a web-based inventory system aimed at improving organizational inventory tracking. The study outlines the system architecture, development methodology, and web technologies used. By replacing manual record-keeping with real-time data updates, the system enhances accuracy and streamlines inventory control. The paper highlights operational benefits such as reduced errors, improved efficiency, and enhanced decision-making, particularly for small to medium enterprises.

The work in [8] investigated the relationship between inventory practices and SME performance in Harare's manufacturing industry. Using quantitative analysis, the authors assessed various inventory control techniques and their impact on production and business outcomes. The study identifies key issues, including poor technology adoption and ineffective tracking methods, which hinder efficiency and profitability. The paper advocates for the adoption of robust inventory systems to improve supply chain responsiveness and sustain competitive advantage.

In [9], there was an examination of the systemic benefits of implementing web-based inventory systems in supply chain operations. Utilizing quantitative methods, the study reveals that these systems enhance information flow, reduce lead times, and improve order accuracy. The authors emphasize the pivotal role of digital inventory solutions in driving overall supply chain efficiency and performance.

Research in [10] investigated how the convergence of IoT and cloud technologies enhances inventory operations or warehouse efficiency. Through detailed system analysis and real-time data processing models, the authors demonstrate improved accuracy, reduced latency, and greater scalability. The study also addresses implementation challenges, offering insights into successful technology integration in industrial inventory contexts. This is also buttressed by [11].

Furthermore, [12] affords a real time inventory management system powered by generative user interface. Also, it explores the architecture and functionality of real-time integration within inventory platforms. The work illustrates how up-to-date data flow support better operational decisions, increase responsiveness, and enhance inventory accuracy. The paper underscores the managerial and technical benefits of seamless data integration in modern inventory systems.

In [13], the application of big data analytics in supply chain processes, including inventory management is explored. The study demonstrates how real-time analytics can enhance decision-making and reduce forecasting errors, thereby improving supply chain responsiveness. The work emphasizes the strategic role of data-driven insights in optimizing logistics operations and inventory control across various sectors.

The work in [14] emphasizes the importance of user-centered design in the development of web-based inventory systems. The study demonstrates that systems built with usability as a core principle achieve higher adoption rates, reduce user errors, and shorten training times. By prioritizing the end-user experience, the authors highlight how interface design directly contributes to system effectiveness and organizational efficiency. Furthermore, it highlights the

significance of human-computer interaction in inventory system design. Through detailed usability testing and interface evaluation, the study shows that user-centric systems result in higher adoption rates, fewer operational errors, and reduced training requirements. The authors argue that prioritizing usability leads to substantial improvements in system efficiency and user satisfaction.

Research in [15] confirms the influence of digital transformation on business practices, also, examined how predictive analytics and dynamic data integration can refine inventory management in online retail. The findings indicate that web-based systems significantly reduce overstocking, streamline supply chain processes, and improve customer service efficiency, reinforcing the strategic value of digital inventory tools in e-commerce.

2.1 The Importance of Web-Based Inventory Management

Traditional inventory management methods, which often rely on manual tracking and paperwork, are no longer sufficient for modern businesses. These outdated systems are time-consuming, prone to errors, and lack the flexibility to manage inventory efficiently. With the increasing complexity of business operations and the need for real-time data, web-based inventory management systems offer significant advantages. These systems enable real-time monitoring, improve communication, and enhance data accuracy, providing businesses with greater control over their inventory. By automating inventory processes, businesses can optimize resource allocation, reduce waste, and make better-informed decisions. Web-based inventory management systems offer a comprehensive solution to manage inventory more effectively and efficiently in today's fast-paced business environment.

2.2 Technological Progress in Web-Based Inventory Management Systems

The evolution of web-based inventory management systems marks a significant shift from manual methods to advanced digital solutions. Initially, inventory management began with mechanical and electronic systems in the early 20th century, which were limited to in-house operations and required considerable manual input. The 1960s and 1970s introduced computerized inventory systems using mainframe and minicomputer technologies, allowing businesses to automate stock tracking, although these systems were expensive and limited to larger organizations [16].

In the 1980s, personal computers and local area networks (LANs) made inventory management software more accessible and affordable, allowing smaller businesses to adopt such solutions. The real breakthrough came in the 1990s with the rise of the internet, leading to the development of web-based inventory systems [17]. These early systems provided basic functions like stock tracking and order processing, but the real transformation occurred with the expansion of internet connectivity and more robust web technologies in the late 1990s and early 2000s. This enabled real-time inventory tracking and automated reordering.

The emergence of cloud computing in the 2000s revolutionized web-based inventory management by offering scalable, cost-effective solutions that allowed businesses of all sizes to

access advanced features [18]. The integration of mobile access, Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM) systems, and advanced analytics further enhanced these platforms. Today, technologies like artificial intelligence and machine learning have further improved inventory forecasting, predictive analytics, and overall system performance, making web-based inventory management systems essential for businesses in various industries.

2.3 Key Features and Functionalities of the Web-Based Inventory Management System

This Web-Based Inventory Management System is designed to optimize the tracking and control of inventory for Small and Medium Scale Enterprises (SMEs). The system typically includes features such as:

1. **Real-time inventory management:** This enables businesses to monitor stock levels continuously, ensuring up-to-date information on inventory status.
2. **Sales and purchase tracking:** The system can track sales and purchase transactions, offering detailed insights into business activity.
3. **Role-based access:** It ensures that different users (e.g., administrators, sales staff) have appropriate levels of access to system features, maintaining data security.
4. **Low stock level alerts:** The system notifies users when stock levels are low, helping to prevent stockouts and ensure timely restocking.
5. **Product expiration alerts:** It tracks product expiry dates, providing alerts to reduce waste and ensure products are sold or disposed of before they expire.

2.4 Challenges and Considerations in Implementing a Web-Based Inventory Management System

While web-based inventory management systems offer many benefits, their implementation also presents several challenges that require careful consideration. One major concern is **data security**, as protecting sensitive inventory data from cyber threats requires strong encryption, access controls, and regular security audits. **System integration** can be complex, particularly when integrating with other business systems like ERP or CRM, often requiring customized solutions to ensure seamless data flow. As businesses grow, **scalability** becomes essential, as the system must accommodate larger datasets and more complex operations without compromising performance. **User adoption** is another challenge, as resistance to new technology and the learning curve associated with web-based systems can impact the system's effectiveness. Finally, **maintenance and support** are critical for ensuring the long-term reliability and performance of the system, necessitating ongoing updates, bug fixes, and technical assistance.

3.0 METHODOLOGY

The development of the Web-Based Inventory Management System (WBIMS) adhered to a systematic methodology comprising requirement analysis, system design, development, testing, and deployment. This method ensured that the system addressed user needs while being scalable, efficient, and easy to use.

3.1 Requirement Analysis

The requirement analysis focused on collecting requirements from important stakeholders, such as hostel administrators, residents, and maintenance personnel. Surveys, interviews, and observations were carried out to identify the needs and challenges present in existing Inventory management practices. The requirements were organized into functional and non-functional categories, which laid the groundwork for specifying the system's capabilities, including real time inventory updates, low stock alerts, expiry date alerts.

3.2 System Design

By adopting a modular strategy, the system was designed to include multiple interrelated elements that facilitate effortless scalability and upkeep. The design process encompassed: Use case design, Flowchart design and Sequence design.

The **flowchart diagram** in Figure 1 below illustrates the flow of operations within the system, beginning from user login and authentication to the management of inventory levels. The flowchart details the logical sequence of activities, ensuring that inventory adjustments, notifications, and report generation follow the correct processes.

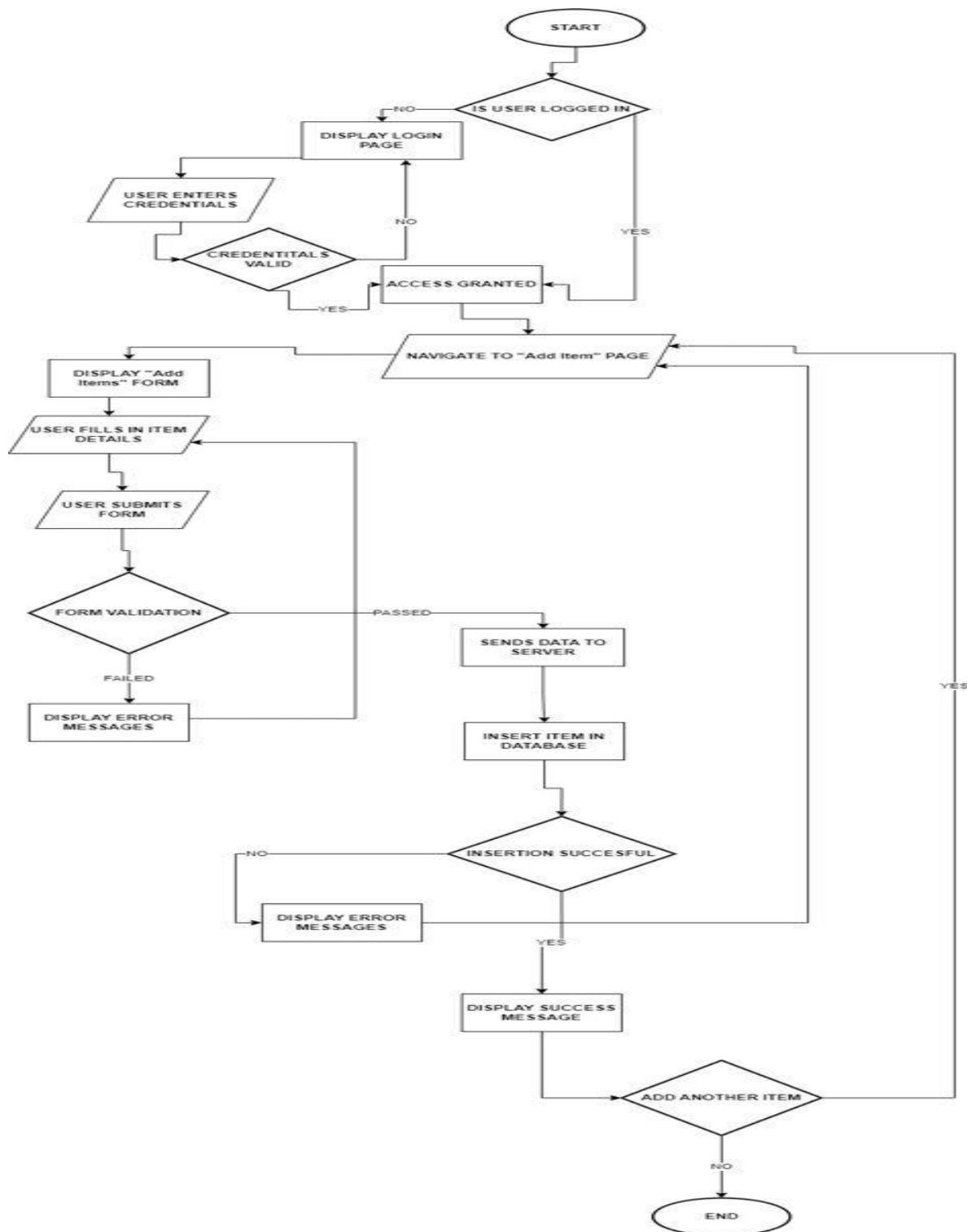


Figure 1: Flow Chart Diagram of WBIS

The **Use case** diagram in Figure 2 depicts the interactions between actors (i.e., users) and the system. Primary use cases include logging into the system, managing inventory, generating reports, and receiving system alerts. The diagram clarifies the roles of different users (e.g., administrator, store manager) and their interactions with various system functionalities.

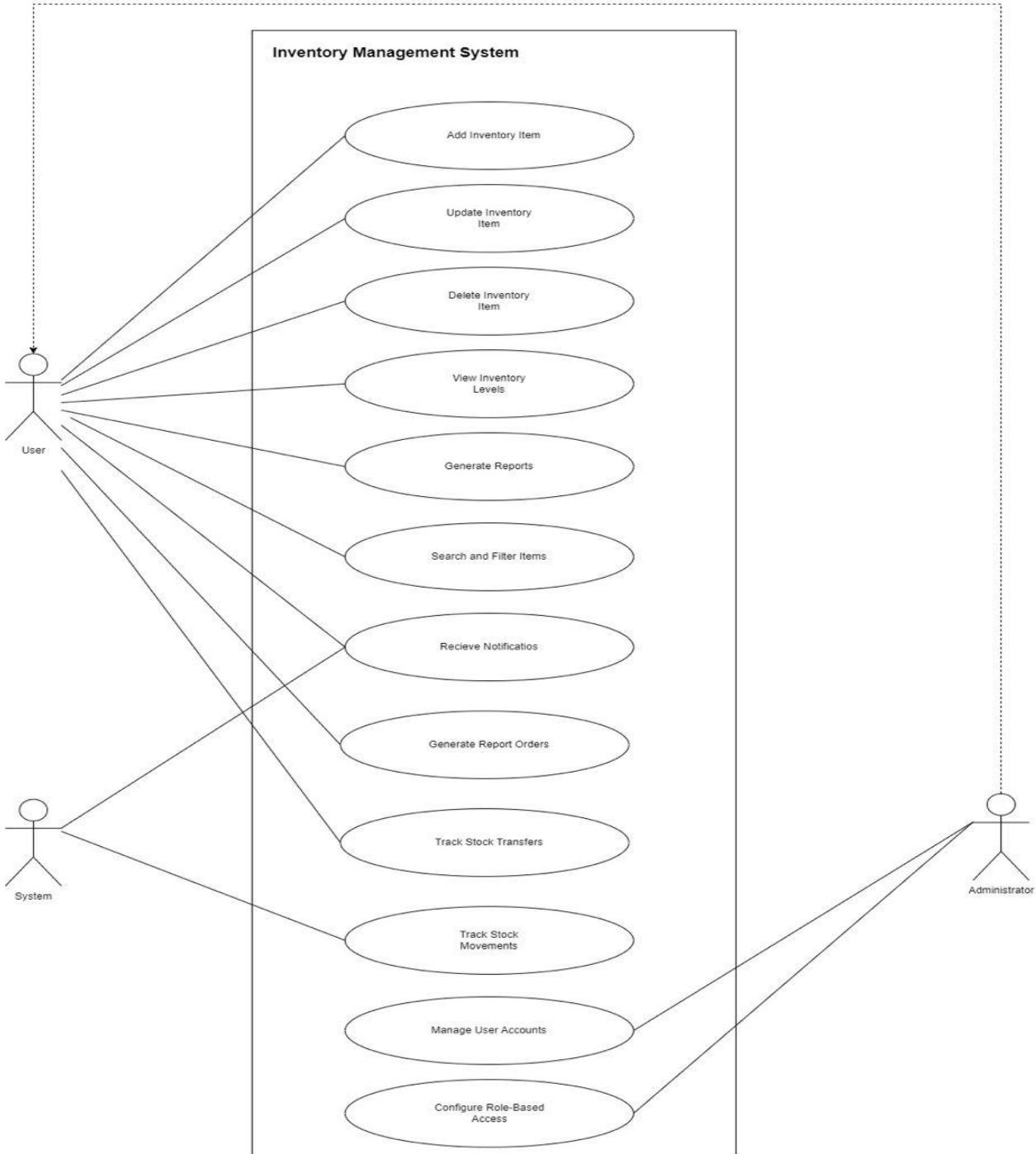


Figure 2: Use Case model Diagram of WBIS

The **sequence** diagram in Figure 3 outlines the chronological order of interactions between system components. It illustrates the process flow when a user performs tasks such as adding a new inventory item or requesting an inventory report. The diagram shows the sequence of interactions between the user interface, the application server, and the database, ensuring real-time updates of inventory data.

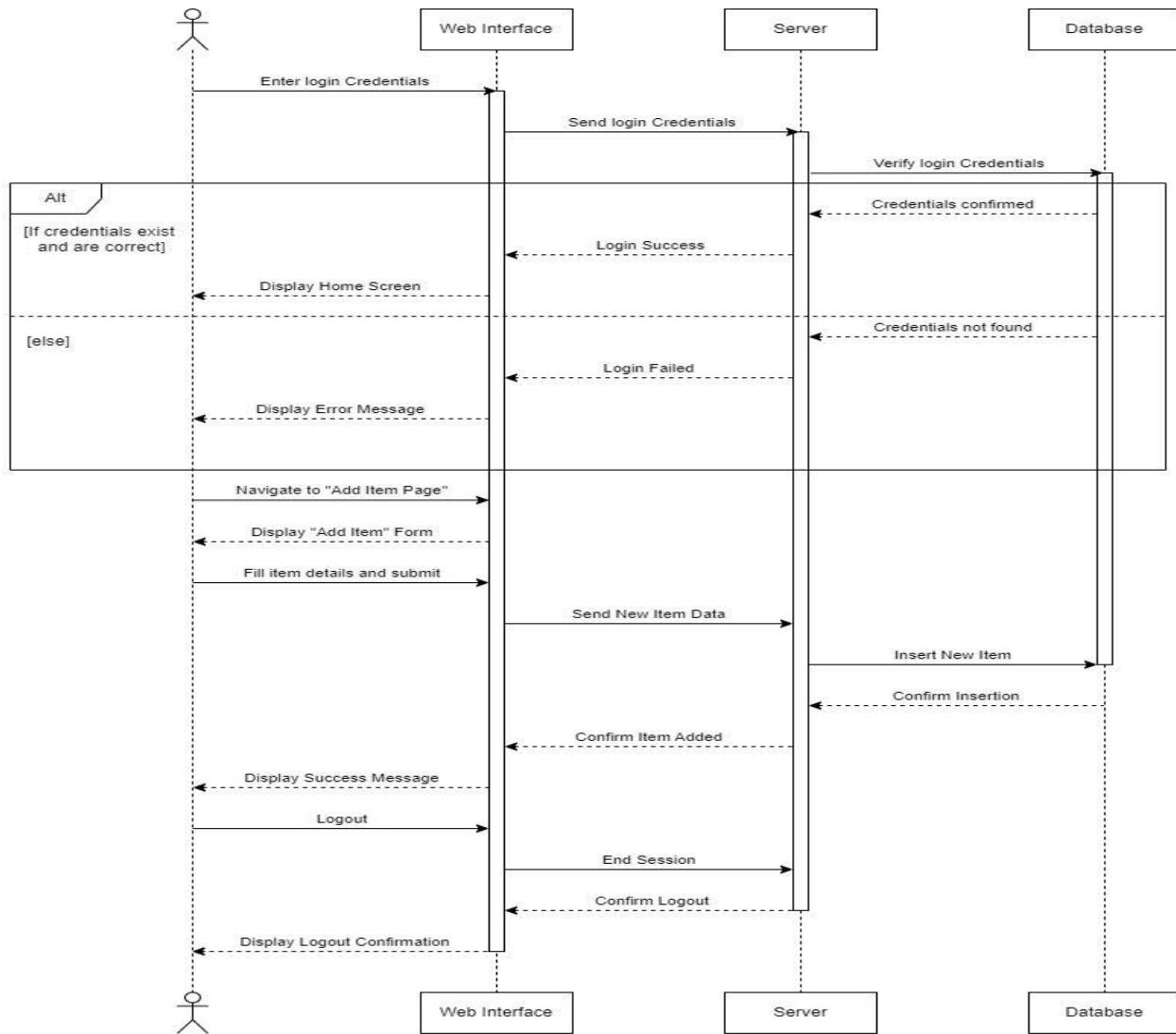
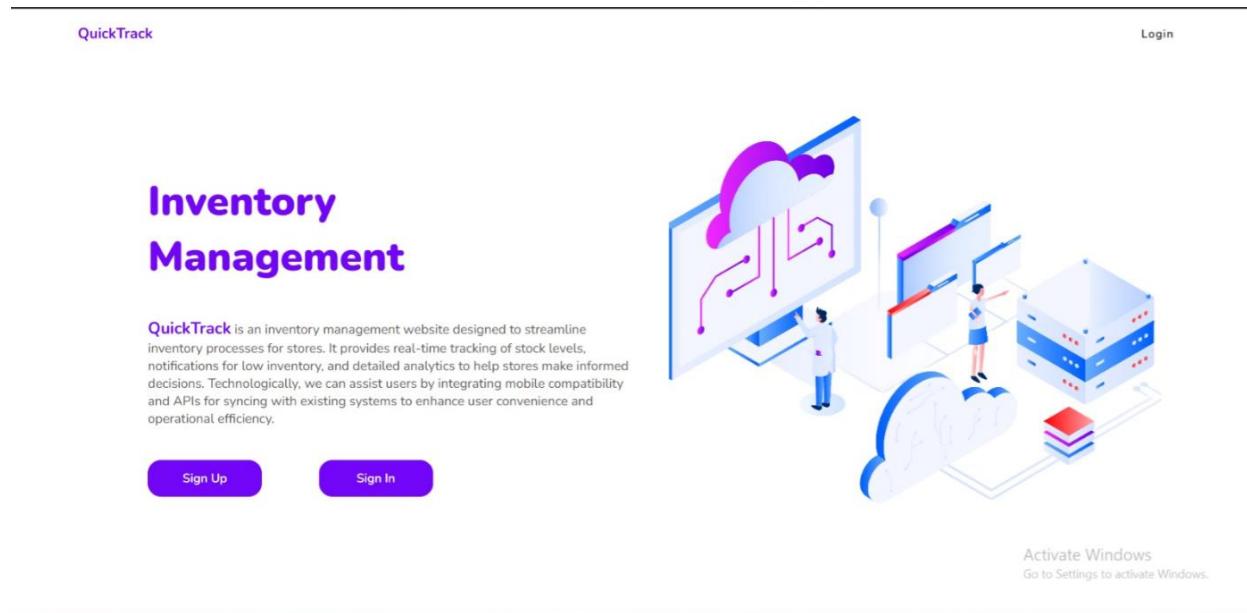


Figure 3: Sequence Model Diagram of WBIS


4.0 SYSTEM DEVELOPMENT TOOL

For the Implementation of the Web-Based Inventory Management System (WBIMS), the following tools were used- HTML, CSS, JS, PHP, Figma and my SQL.

5.0 SYSTEM IMPLEMENTATION AND RESULT

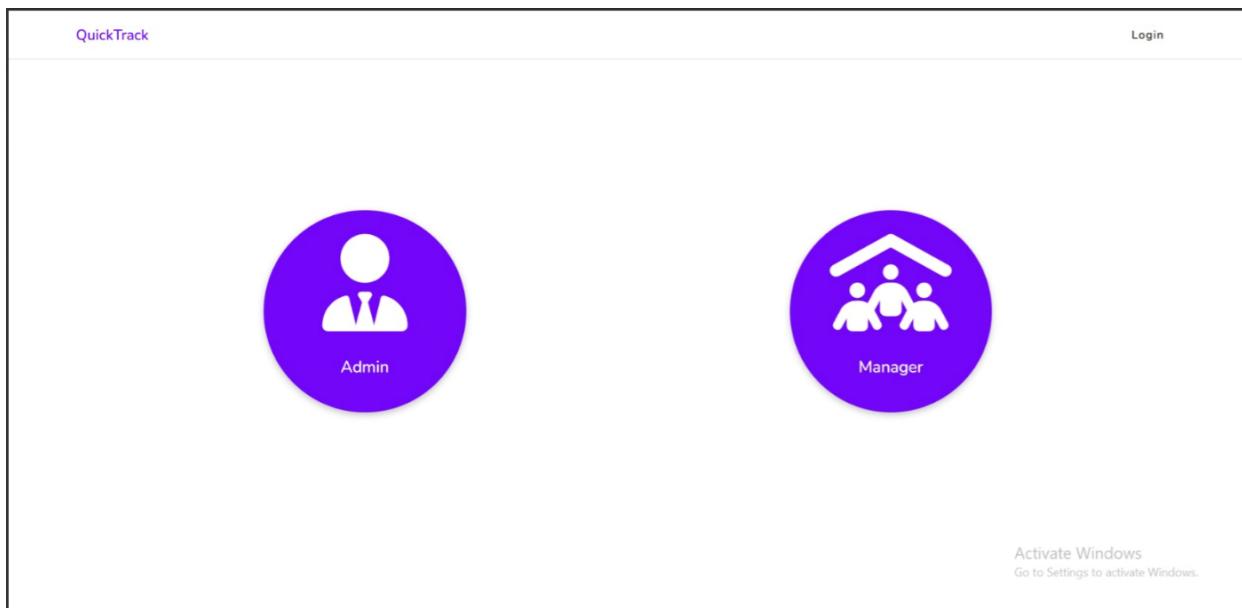

The implementation stage of the Web-Based Inventory Management System (WBIMS) comprised the integration of all developed modules and the deployment of the system for use by managers and admins. Below are some of the pages on the Inventory Management System.

Figure 4 shows the Landing page, this is the web page that appears whenever users launch the website URL. It presents the potential users with the function to register and returning users, it allows them to login into the system.

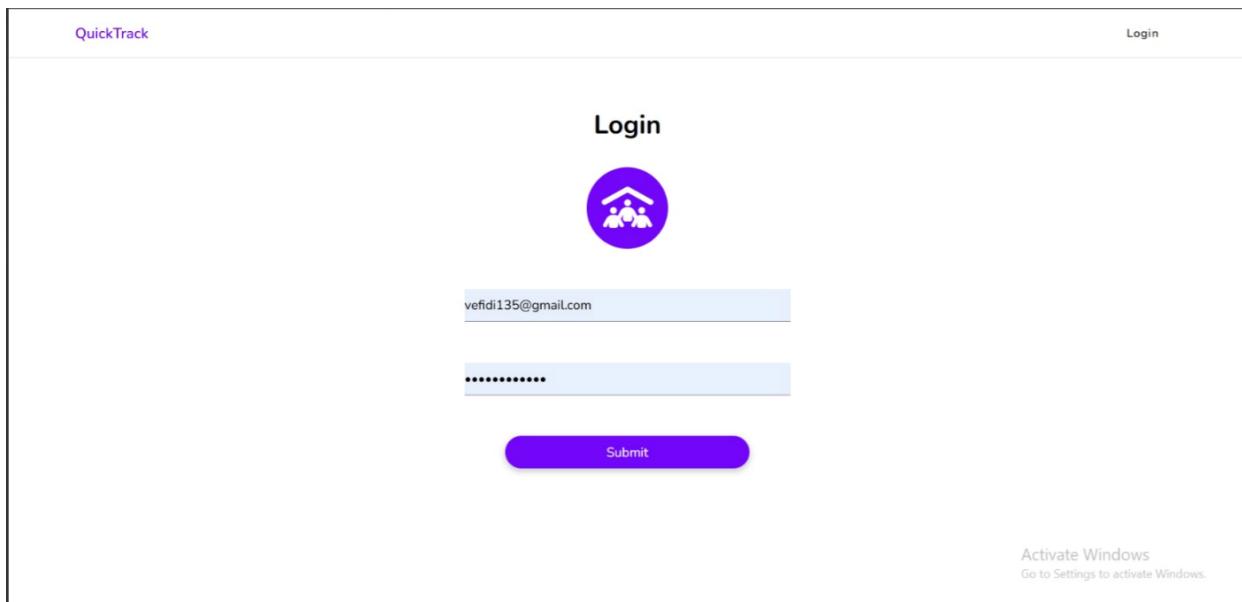


Figure 4: Landing Page Diagram of WBIS

Figure 5 and 6 shows the Login page, this is the web page that appears whenever users tries to login. It presents the existing users with the function to login and continue work as usual.

Figure 5: Login Page Diagram of WBIS I

Figure 6: Login Page Diagram of WBIS II

Figure 7 shows the admin dashboard page, this is the web page that appears whenever an admin user logs in. It presents the different stores/branches under that admin.

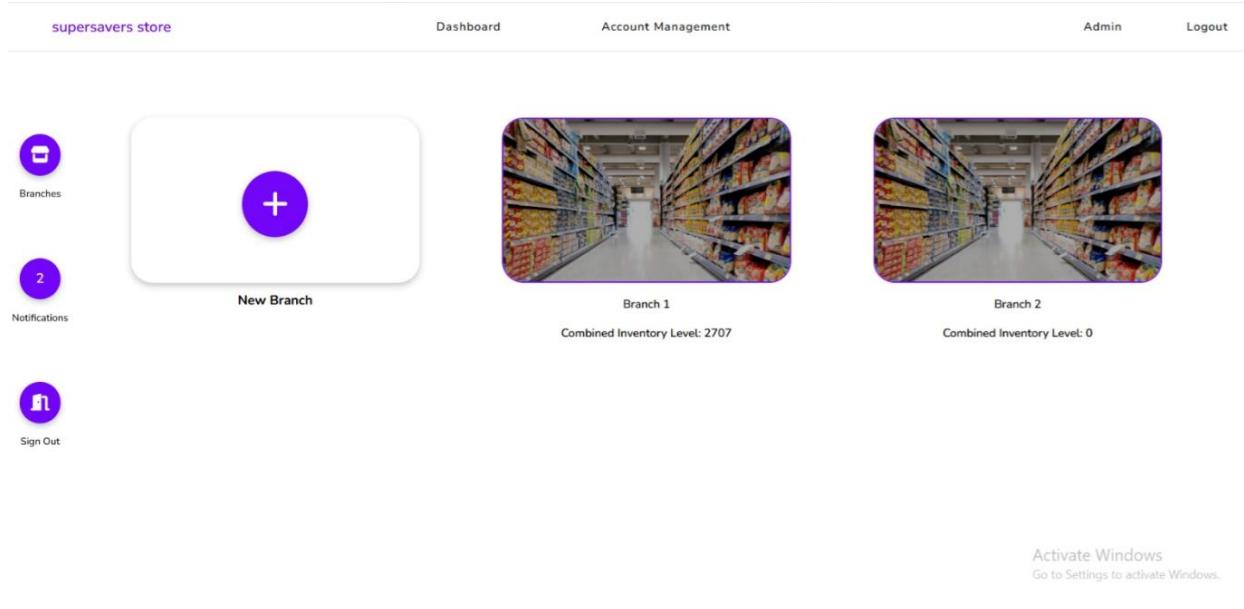


Figure 7: Admin Dashboard Page Diagram of WBIS

Figure 8 shows the manager dashboard page, this is the web page that appears whenever a manager user logs in. It presents the particular store/branch that manager handles.

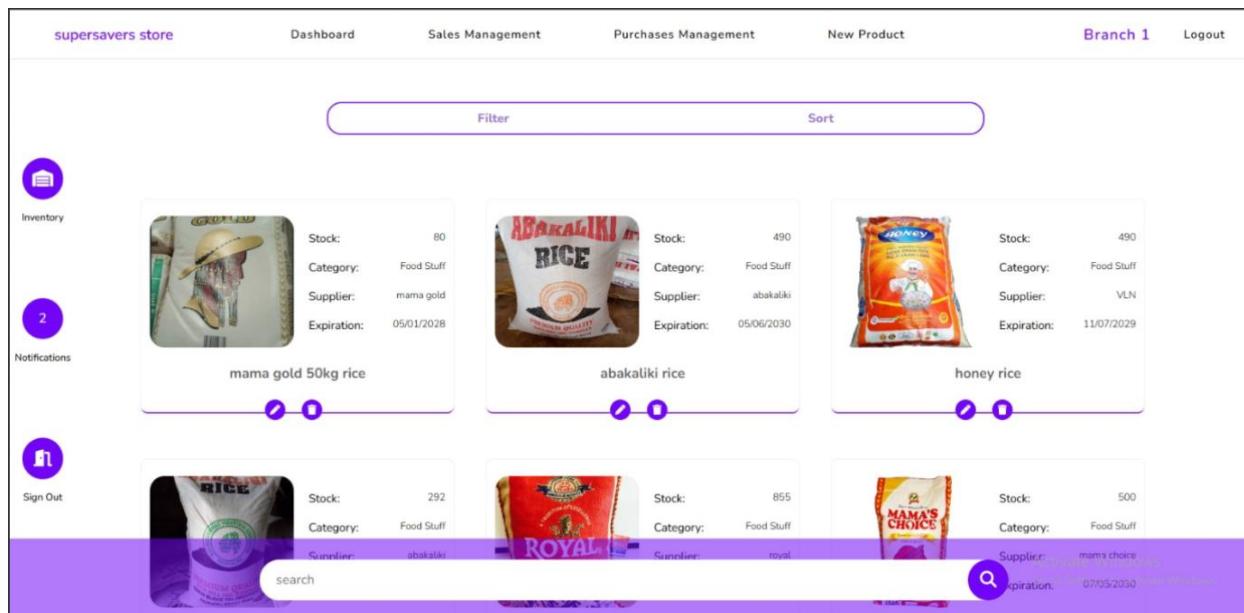


Figure 8: Store Manager Dashboard Page Diagram of WBIS

6.0 CONCLUSION

Embracing modern Web-Based Inventory Management Systems (WIMS) is crucial for businesses and organizations aiming to optimize resource management and streamline operations. These systems enhance accuracy in inventory tracking, reduce manual errors, and provide real-time access to inventory data. By automating key processes and improving data transparency, WIMS promotes operational efficiency and informed decision-making. The integration of cutting-edge technologies such as cloud computing, responsive web design, and data analytics has transformed traditional inventory methods into agile and scalable digital solutions. While implementation may pose initial challenges, the long-term benefits of a well-designed WBIMS including cost reduction, better stock control, and improved customer satisfaction far outweigh any setbacks. Ultimately, the adoption of a web-based inventory system is a strategic move that empowers organizations to operate more effectively, competitively, and sustainably in today's dynamic business environment.

7.0 RECOMMENDATION

In future to enhance the web-based inventory management system, several recommendations are proposed. First, integrating AI-driven predictive analytics would help forecast inventory demands and optimize stock management. Additionally, developing a mobile app would improve accessibility, allowing inventory management on the go. Supporting multiple languages and currencies would increase system flexibility for SMEs operating in various regions. IoT integration, including RFID tags and smart sensors, could enable real-time inventory tracking, improving accuracy. Comprehensive user training and support materials should be provided to ensure smooth adoption and usage. Lastly, regularly updating security protocols and conducting vulnerability assessments will safeguard sensitive data and ensure robust system security.

REFERENCES

- [1] IASB, *International Accounting Standard (IAS) 2: Inventories*, IFRS Foundation, 2020.
- [2] Council of Supply Chain Management Professionals, *CSCMP Supply Chain Management Definitions*, 2021. [Online]. Available: <https://cscmp.org>
- [3] R. Pal and R. Kant, "Technological advancement and inventory management performance: A study on SMEs," *J. Small Bus. Manag.*, vol. 58, no. 3, pp. 412–428, 2020.
- [4] M. E. Erameh, & C. I. Odoh. Design and implementation of a web-based inventory control system using a small medium enterprise (SME) as a case study. *NIPES Journal of Science and Technology Research*, 3(2), 52–60. 2021.
- [5] E. A. Oyekan, A. J. Ikuomola, and S. T. Adebayo. An improved web-based inventory management system for universities. In *Proceedings of the 3rd International Multi-Disciplinary Conference: Integrated Sciences and Technologies (IMDC-IST 2023)* (pp. 51–62, 2024). EAI. <https://eudl.eu/doi/10.4108/eai.25-10-2023.2348749>

- [6] H. Gupta, S. Kumar, S. Kusi-Sarpong, C. J. Jabbour, and M. Agyemang. Cloud supply chain inventory management: A data-driven approach. *Mathematics*, 12(4), 573. 2024. <https://doi.org/10.3390/math12040573>
- [7] J. S. Pasaribu. Development of a web based inventory information system. *International Journal of Engineering, Science & Information Technology (IJESTY)*, 1(2), 24–31. 2021. <https://doi.org/10.52088/ijesty.v1i2.51>
- [8] W. Muchaendepi, C. Mbohwa, T. Hamandishe, and J. Kanyep. Inventory management and performance of SMEs in the manufacturing sector of Harare. *Procedia Manufacturing*, 33, 454–461. 2019. <https://doi.org/10.1016/j.promfg.2019.04.056>
- [9] L. Nguyen, and M. Harrison. (2018). The impact of web-based inventory management systems on supply chain performance. *Journal of Business Logistics*, 39(2), 121–135.
- [10] N. El-Saadawi, and Rose, H. Integrating IoT with Cloud Computing for Enhanced Warehouse Efficiency. 1-29. 2024. https://www.researchgate.net/publication/385475040_Integrating_IoT_with_Cloud_Computing_for_Enhanced_Warehouse_Efficiency/citations
- [11] R. Ajayi, Integrating IoT and Cloud Computing for Continuous Process Optimization in Real Time Systems, *International Journal of Research Publication and Reviews*, Vol 6, no 1, pp 2540-2558 January 2025 2541. <https://ijrpr.com/uploads/V6ISSUE1/IJRPR37865.pdf>
- [12] O. Patil, K. Himani, P. Rohit, D. Ishaan & S. Krishna. Real Time Inventory Management System powered by Generative User Interface. *International Journal of Scientific Research in Engineering and Management*. 8(4): 6. 2024. 10.55041/IJSREM32623. <https://ijsrem.com/download/real-time-inventory-management-system-powered-by-generative-user-interface/>
- [13] G. Wang, A. Gunasekaran, E. Ngai, T. Papadopoulos. Big data analytics in logistics and supply chain management: Certain investigations for research and applications, *International Journal of Production Economics*, Volume 176, 2016, Pages 98-110, ISSN 0925-5273. <https://doi.org/10.1016/j.ijpe.2016.03.014>.
- [14] J. Martinez, and L. Perez. User-centered design in web-based inventory systems: Enhancing usability and efficiency. *International Journal of Human–Computer Studies*, 105, 36–48. 2017.
- [15] I. A. Moghrabi, S. A. Bhat, P. Szcukko, R. A. AlKhaled, M. A. Dar. Digital Transformation and Its Influence on Sustainable Manufacturing and Business Practices. *Sustainability*, 15(4), 3010. 2023. <https://doi.org/10.3390/su15043010>.
- [16] Nahmias, S., & Olsen, T.L. (2015). *Production and Operations Analysis* (7th ed.). Waveland Press.
- [17] Kumar, S., & Saini, R. (2017). Evolution of Inventory Management System: A Study. *International Journal of Engineering Sciences & Research Technology*, 6(1), 23–28.
- [18] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., & Zaharia, M. (2010). A view of cloud computing. *Communications of the ACM*, 53(4), 50–58. <https://doi.org/10.1145/1721654.1721672>.